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INTRODUCTION 

The measurements of mesospheric ozone by Weeks et al. [1] during the 
course of the November 1969 solar proton event showed an intriguing de- 
crease in ozone. Other studies [2, 3] have indicated that such a de- 
crease in mesospheric odd oxygen can be attributed to an increase in 

odd hydrogen due to enhanced ionization. The hydration of O2 ions and 

the chain of reactions which leads to the hydronium ions H30+'(H20)n 
produce an OH radical, and subsequent electron-ion recombination frees 
atonic hydrogen (see for example Reid [41). These species of odd hydro- 
gen, along with the concomitantly produced HO2, serve as catalysts in an 

effective chain reaction which destroys odd oxygen in the mesosphere. 

Various forms of odd nitrogen are also produced either directly during 
the actual ionization of air or rapidly thereafter via fast ion-molecule 
interactions. While catalytic destruction of odd oxygen by N0X is impor- 

tant in the stratosphere, the destruction of odd oxygen is dominated by 
the H0X chain reactions in the mesosphere. 

In this study the time varying history of the particle induced ioniza- 
tion rates during the peak period of the August 1972 solar proton event 
is used to construct a detailed history of the odd hydrogen sources. A 
comparison is then made between the concentrations of H, OH, HO2, 0, and 

Oo for the 4-5 August 1972 period of the solar proton event (SPE) and the 
same time period with the SPE sources removed. Attention is limited to 
the subsequent effects in the mesosphere. 

The emphasis of this study is to determine the immediate products of 
ionization for later use as lumped parameters in large-scale nuclear 
weapons effects (NWE) simulation codes. Solar proton events, which pro- 
duce large amounts of ionization in the middle atmosphere, are analogous 
to late-time effects of nuclear bursts. Successful modeling of such nat- 
urally occurring events serves to validate the sections of NWE codes 
which deal with post-burst effects in the middle atmosphere. 

ION PRODUCTION RATES AND CHEMISTRY 

The time dependent ion-pair production rate profiles are taken from 
Reagan and Watt [5 I and Watt [61. These profiles are shown in Fig. 1 
for a few selected altitudes. The ionization profiles have been com- 
puted from satellite measurements of particle fluxes, but often these 
measurements are for widely divergent longitudes. The Chatanika radar 
showed a large enhancement of ionization mainly above 70 km, around 
2200 UT on 4 August 1972 fBJ; consequently, several points in Fig. 1 
have been interpolated to match this feature. Since the satellite 
measurements have been made at varying longitudes, some uncertainty is 
introduced into the values when they are compiled for use at one loca- 
tion, particularly when auroral electrons make significant contributions. 
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Figure 1.    The time history of ionization rates during the August 1972 
particle event at 80, 72, and 63 km. 



In addition,  the particle deposition profiles have been calculated for 
the CIRA 1965 mean reference atmosphere [7].    A comparison with a high 
latitude model  for August (CIRA 1972 [8]) shows that these latter ireso- 
spheric densities are larger than those given in the mean reference 
atmosphere.    Because of uncertainties in longitudinal correlation and 
auroral enhancements, the ion-pair production should be considered 
accurate only within approximately 20 percent (0. B. Reagan, private 
communication), which generally encompasses the uncertainties due to 
different model atmospheres.   The ionization rates are therefore used 
as originally calculated, even though they may tend to somewhat under- 
estimate actual  values. 

In the subsequent calculations dealing with the ion and neutral chemis- 
tries, the model  atmosphere used for the major neutral constituents is 
the CIRA 1972, August 65° N model, with the corresponding temperature- 
profile.    The HpO density is set at 5 ppm of the neutral number density. 
The initial  densities of several minor neutral constituents are shown in 
Fig. 2.    The boundaries of the 24-hour period under study, 03:06 UT 
4 August to 03:06 UT 5 August, or 17:06 local  time, have been chosen to 
match with available satellite data. 

The neutral  and ion chemistries are calculated by use of a large multi- 
species chemistry code called DIARCHEM (for D-region air chemistry) [91. 
For the present study a configuration of 64 ion and neutral species and 
493 reactions has been used which encompasses oxygen, nitrogen, hydrogen, 
and limited carbon chemistry.   Suitable reviews of the neutral chemistry 
are available in the literature [10, 111; the emphasis here will be on 
the ion-neutral chemistry. 

The majority of odd nitrogen is produced directly during the ionization 
of N2 by incident protons and (mainly) secondary electrons.    Following 
the work of Porter et al.  [12], the initial   ratios are taken as 1.04 N 
atoms per ion pair (apportioned among the ^S, ^D, and ^P states) and 
0.154 N+ atoms per ion pair.   The baseline production of odd nitrogen 
may then be taken as 1.2 N atoms per ion pair, some of which are in 
excited and ionized states.   These atoms are then converted to NO through 
rapid neutral  reactions, ion-atom interchanges, and subsequent recombina- 
tion.    Roble and Rees 113 1 provide a good review of the two-body ion and 
neutral chemistries. 

Additional odd nitrogen is formed by charge exchange and ion-atom inter- 
changes by the other primary ions of the initial  ionization occurrence. 
Table 1 lists the pertinent reactions which are involved in the formation 
of odd nitrogen after the initial  ionization.    At mesospheric heights, 
essentially all of the N2 formed undergoes charge exchange with O2 to 
form O2, as does a majority of the 0+.   About 20 to 25 percent of the 

0+ undergoes an ion-atom interchange with N2 to form N0+ + N.    Since 
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Figure 2. The densities of several minor neutral species at the beginning 
of the 24-hour period 03:06 UT 4 Aug (17:06 local time). Solar 
zenith angle is 69°. 

TABLE 1.    MAJOR ION-MOLECULE REACTIONS LEADING TO ODD NITROGEN 

Reaction 

N2 * 02 " N2 + 02 

0* + o2 - 0 + 0* 

O2 ♦ N2 H- NO* ♦ NO 

0+ + N2 ^ N0+ + N 

0* + N2 + M -► N0+ ■•■ N ♦ M 

Rate Cpnstant 

5.0 (-10) (300/T)0-8* 

2.0 (-11) (300/T)0-4 

<1.0 (-15)+ 

1.2 (-12)  (300/T) 

1.6 (-29) (300/T) 

0.5 

2.0 

*P.ead as 5.0 x 10"10   (300/T)0-8 cm3s_1, units of cmV1 for three-body 
reactions. 

tReactlon has never been observed; the rate constant. If the reaction 
proceeds. Is below detection threshold. 



there are 0.063 0+ ati/.is formed per ion pair, the ratio of odd nitrogen 
formed per ion pair may be raised to 1.22. 

In the stratosphere the three-body reaction 0   +N2 + M-»-N + N0   +M 
becomes important and below 40 km is most likely the dominant loss pro- 
cess for 0+, based on the four-fold increase in the apparent bimolecular 
rate of the three-body reaction over the same two-body reaction [14]. 
There may be a three-body charge transfer process 0+ + O2 + M -^ 0 + O2 + M 
which would continue to transfer the 0+ charge to Op, but it has not been 
observed due to the fast rate for the two-body O"1" + O2 charge exchange 
reaction.    The potential 0+ + O2 + M reaction rate is probably the same 
order of magnitude as the measured 0+ + ^ + M rate (F. C.  Fehsenfeld, 
private communication), so that the ion-atom interchange to form odd 
nitrogen is still the most likely loss process for 0 .    Therefore, the 
odd nitrogen per ion pair ratio may well rise to 1,32 in the stratosphere. 

The one other reaction which may produce odd nitrogen is O2 + No ^ 
NO   + NO.    The reaction rate is below measurement threshold and has been 
set at < 10'^5 cnrs-1  [15].    For the purpose of this study, a value of 
10"^ has been chosen.    At this rate the 0^ + N2 reaction is a negligible 
loss of O2 in the stratosphere, but may become of some importance in the 
upper mesosphere under quiet to moderately disturbed conditions.    Nor- 
mally the major losses of 0- In the mesosphere are recombination with elec- 
trons, charge transfer with NO, and processes leading to hydration.    In 
the upper mesosphere the lifetime of 0« is long enough that a fraction of 
the oj may undergo the Ion-atom interchange with Ng.    This fraction de- 
creases with increasing ionization levels so that in the mesosphere the 
odd nitrogen production ratio will exceed 1.22, but will fall back toward 
this figure as the level of ionization increases. 

In summary, the lower bound for the odd nitrogen per ion pair ratio is 
1.22, but may be somewhat higher in the upper mesosphere due to the un- 
measured O2 + Np reaction.    In the stratosphere the ratio may increase 
to 1.32, which can reasonably serve as an upper limit throughout the 
entire middle atmosphere. 

The eventual formation of odd hydrogen from the initial  ionization occur- 
rence follows a less direct and correspondingly somewhat slower route 
than that of odd nitrogen.    The primary ion-neutral  and ion-recombination 
reactions which lead to the production of odd hydrogen and the subsequent 
neutral reactions which destroy odd oxygen are listed in Table 2. 



TABLE 2.    SELECTED REACTIONS AND THEIR RATE 
CONSTANTS LEADING TO ODD HYDROGEN 

a. oj + 02 + M -* oj + M 

b. Oj + H20 -^ 02-H20 + 0 

c. 02-H20 + H20 -»■ H30+-OH + 02 

d. 02-H20 + HO + H30+ + OH + 02 

e. H30+-OH + H20 -> H30+-H20 + OH 

f. H30+ + N2 + M -v H30+-N2 + M 

g. H30+-N2 + H20 -► H30+-H20 + N2 

h. H30+.OH(or N2) + e -* H + 0H(or N2) + H 0 

i. H30+-(H20)n + e -> H + (n+i)-H20 

j. H30+-(H20)n- + X" -> products 

k. H30+-H20 + H 0 + M H. H30+-(H20)2 + M 

1. N0+-(H20)3 + H20 -. H30+-(H20)2 + HN02 

tn. H30+(H20)n + H 0 + M ^ H30+-{H20)n+1 + M 

n. 0 + OH ^ H + 02 

o. H + 03 ^ OH + 02 

p. H + 02 + M ^ H02 + M 

q. H02 + 0 ^ OH + 02 

♦Read as 3.9 x 10"30(300/T)3'2; inlts In ^s"1 for two-body reactions, 

cm^s     for three-body reactions. 

3.9 (-30)  (300/T)o-d 

1.5 (-9) 

1.0 [-9) 

2.0 (-10) 

1.4 (-9) 

1.4 (-30)  (300/T)4-0 

1.0 [-9)   ' 

2.0 [-6)  (300/T)0-2 

1.3 • - 7.4 (-6)  (300/T)0 

6.0 ( :-8) 

2.3 ( :-27)  (300/T)4-0 

7.0 ( '-ID 

2.4 - ■ 0.9 (-27) (300/T) 

4.2 ( -11) 

1.2 ( -10) exp (-562/T) 

2.1  1 -32) exp (+290/T) 

3.0 ( -11) 

0.2 

4.0 



Figures 3a and 3b illustrate the flow of ion reactions which produce odd 
hydrogen and the flow of neutral reactions which consume odd oxygen. 
Only the major paths have been shown; and although many ion reactions 
have appreciable reverse rates [16], only the forward directions are 
illustrated.    However, the alternate paths and reverse rates have been 
included in the detailed calculations.    The values for the production 
rates at noon (local time) for the SPE and quiet day cases at 80 km are 
given in Table 3.    In each case these values represent maxima in ion-pair 
production and are the net values in the direction indicated. 

RESULTS 

Table 3 shows that a solar proton event results in a tremendous flow of 
charge through the positive ion chain, with the main channel  being the 
two-step hydration of O2 to H^O «OH, subsequent hydrations t > H^O «HpC, 
and then ion-electron recombination.    Reaction paths 18 anü 19 in Fig. 
3b, which sum the effects of all hydration and recombination reactions 
producing odd hydrogen, show that tne SPE Induced production of H and OH 
can exceed the normal sunlight production through dissociation of H2O 
by more than a factor of 20. 

Figure 4 shows the altitude profiles of the SPE induced H and OH pro- 
duction rates as well as the normal sources due to the dissociation of 
water by sunlight and 0(1D).    Also shown are the electron and summed 
hydroniun ion densities.    The hydration and recombination of the SPE 
induced ionization are obviously the dominant sources throughout most 
of the mesosphere.    These sources of H and OH are controlled by the 
rather sharp H30+«(H20)n ledge at 82 km, by the decreasing effect of 
electron-Ion recombination due to decreasing electron density, and fi- 
nally by the Increasing importance of Ion-Ion recombination, which poten- 
tially serves as an additional source of OH, as one nears the stratopause. 

The effect of the increased production of odd hydrogen on the odd oxygen 
densities can best be illustrated by plotting the ratio of the disturbed 
day SPE densities to the quiet day densities as is done in Fig. 5.   The 
relative effect is greatest near 80 km, which correlates with the maxi- 
mum in odd hydrogen production shown in Fig. 4.    Normally the greatest 
loss process for atomic oxygen is its recombination with O2 to form 

ozone.   The greatly increased production of odd hydrogen causes a large 
drop in atomic oxygen density due to the reactions 0 + OH and 0 + H0? 

becoming the larger loss processes above 65 km.    The reduced atomic oxy- 
gen results in a lowered ozone density because of the decrease in the re- 
combination of 0 with O2.    Loss of ozone through odd hydrogen reactions 
is secondary to photodestruction processes.    Therefore the relative 
changes in the ozone profile are closely coupled to those in the atomic 
oxygen profile, as is Illustrated in Fig. 5.    Likewise, the speed of the 
reaction H + O2 + M in converting H to HO2 is sufficient to Insure that 
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Figure 3a. The reaction paths in the positive ion chain. Odd hydrogen is 
produced at steps 4 to 8, 10, 12, 15, and 17„ The production 
rates at 80 km, local noon, are given in Table 3 for each of 
the stepso 
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Figure 3b. The reaction paths in the positive ion, neutral chain. 
Nascent odd hydrogen is introduced at steps 18 to 20. The 
production rates at 80 km, local noon, are given in Table 3 
for each of the steps. 
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TABLE 3. PRODUCTION RATE VALUES 

Path Reaction 
(Figs. 3a + b)   Table 2 

la (see F1g. 1) 
lb. 
2 * a 
3 b 
4 c 
5 h 
6 e 
7 d 
8 1 
9 f 

10 h 
11 9 
12 l.j 
13 k 
14a (see Reld. 1977) 
14b 1 
15 1J 
16 m 
17 l.j 
18a 1J 
18b ij 
19 c,d 
20 (see Fig. 4) 
21 n 
22 o 
23 p 
24 q 

Production Rates at 80 km (cm"3s'^ 
W lulet Day 

1.0 
1.9 
8.6 
6.5 
4.7 
6.9 
4.0 
9.4 
1.0 
8.4 
1.3 
7.1 
4.5 
1.7 
3.2 

51* 
4 
4 
4 
3 
4) 

I 
3] 
3 
3 
4] 
3 
1 

5.3 (0 
1.7 3 
3.6 (1) 
3.6 1) 

1!:?! 1 
9 
1.7 
1.7 
1.3 
<1. 
1.3 
2.6 
<1. 
3.5 
<1. 
3.5 
1.2 
3.5 
5.3 
5.2 
5.1 
8.2 
8.2 
8.9 
<1. 
1.6 
2.7 
6.9 
7.6 
6.1 
6.1 

-2 
-2 
-2 
-4] 
-2 
-3 
-4) 

4] 
( ::! 
-2 
-1 
-1 
-1 
-2 
-1 
-1 
-1 
-4 
-2 
3 
5 
4) 
5) 
5) 

♦Read as 1.0 x 105 cm'V1 

**The Increase In this production rate Is due to another source of H3O 

via the reaction N0+'(H20)2 + hu -* H30
+ + HN02 to which a tentative 

cross section of ^ 3 x lO"^0 cm2 has been assigned. 

11 



most of the odd hydrogen created below 80 km resides as HO, and OH, while 

the similar rates of reaction-. 21 and 24 insure that relative changes in 
the HO2 and OH profiles are closely coupled. Only above 78 km does the 

three-body conversion of H to HO2 begin to slow sufficiently to allow a 

buildup in the H concentration, but even thiü increase is limited by the 
rapid decrease in the SPE sources of odd hydrogen above 82 km shown in 
Fig. 4. 

The number of H atoms and OH molecules produced per ion pair is a useful 
quantity and one which is readily derivable when the detailed chemistry 
is considered. The upper limit is nominally two odd hydrogens per ion 

pair, one OH being produced during the hydration of O2 and an H atom 

being liberated during subsequent recombination of H-O^^O) . In prac- 

tice the recombination and charge-exchange of the precursor ions yield a 
value less than two. Figure 6 shows the ratio of (H + OH) and odd nitro- 
gen per ion pair for two values of the ion-pair production rate. For 
altitudes above 70 km, the higher ion-pair production rate yields a 
noticeably smaller ratio of (H + OH), due mainly to the more rapid rate 
of ion-electron recombination for precursor ions. Even below 70 km, the 
ratio remains slightly lower for higher production rates because of in- 
creased charge exchange with enhanced NO concentrations found under more 
disturbed conditions. The net result is that the odd hydrogen production 
ratio has an effective upper limit of about 1.0 per ion pair below 80 km 
with appreciably lower values possible as the ion-pair production rate 
increases. The relative proportion of OH to H increases below 60 km, as 

can be seen in Fig. 4, due to recombination of H30+'(H20)n with the more 

prevalent negative ions CO3 and N0Ö. which is felt to yield an OH radical 

rather than separate H and 0 atoms. 

DETAILED VARIATIONS IN TIME 

The detailed time history of the odd oxygen and odd hydrogen species 
during the 4-5 August SPE maximum can best be understood if the normal 
quiet day variations are first examined. The time history of the densi- 
ties at 80 km for the 24-hour period under study are shown in Fig. 7. 
The atomic oxygen density, under solar control to a great degree, is 
rapidly decreasing because of the growing attenuation of the solar flux 
shorter than 250 nm. By 17:00 local time, the loss processes 0 + HO« 

and 0 + OH, shown as reaction paths 23 and 24 in the odd hydrogen cata- 
lytic cycle in Fig. 3b, have become the dominant losses for atomic oxy- 
gen, exceeding even the 0 + O2 + M recombination mechanism. The ozone 

profile closely follows the atomic oxygen profile (they are essentially 
in photochemical equilibrium) until the solar flux <310 nm is absorbed 
at a solar zenith angle > 91 degrees. At this point the ozone density 
briefly, but rapidly, increases at the expense of atomic oxygen until 
the still declining atomic oxygen density can no longer support such 

12 
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growth. This fluctuation in ozone is accentuated by the "slow" sunset 
due to the high latitude, summer conditions. (At 80 km the sun does not 
dip below the horizon at this time of year, although the solar UV flux 
is absent for approximately 3 hours about local midnight.) Ozone is 
dissociated by visible light at all times, which accounts for its decay 
during the midnight period. 

The initial source of atomic hydrogen is the photodissociation of water 
vapor, though the total density is essentially controlled by the 0 + OH -»■ 
H + O2 reaction in the odd hydrogen cycle. Consequently, the atomic 

hydrogen density profile closely follows that of atomic oxygen. The 
afternoon decrease in atomic oxygen also causes an increase in the OH 
concentration because the same 0 + OH reaction is the dominant loss pro- 
cess for OH. The abundance of H relative to OH (and HOp) insures that 

there is sufficient flow along the H + O2 + M and HO2 + M paths to keep 

the OH density increasing until it is larger than the rapidly declining 
H density. The sharpness of the peak in the OH density is due to the 
twilight increase in O2 and the increased relative importance of the 

H + O3 ■*■ OH + 02 reaction. 

The continuing decrease in atomic oxygen carries through until shortly 
after midnight because of the dominance of the odd hydrogen losses. The 
first increase in atomic oxygen comes from the continuing visible photo- 
dissociation of ozone followed by a much steeper increase about an hour 
later due to the returning dissociation of O2. The ozone density does 

not begin to increase until the atomic oxygen density has built up enough 
to reestablish photochemical equilibrium. Throughout the late afternoon 
until past midnight, the total odd hydrogen is decreasing because the 
reactions among the species of odd hydrogen themselves, forming mainly 
H2O, are proceeding faster than the photodissociation of water vapor. 

Shortly past midnight, the increasing atomic oxygen density begins to 
build up the H density, principally at the expense of OH (and HO2), 

through reaction path 21, 0 + OH -•• H + O2. Subsequent increase of the 

atomic hydrogen density and the eventual growth of the OH density be- 
ginning in the early morning are now due to the increasing photodissocia- 
tion of water vapor into H and OH. The large amounts of atomic oxygen 
present during the day insure that most of the "new" H and OH produced 
are eventually stored as H. 

In sumary, for the quiet-day situation, atomic oxygen exhibits a large 
degree of solar control and is the dominant minor neutral species. 
Ozone is entirely controlled by atomic oxygen and direct solar influence. 
OH and HO2 serve as the major loss processes for atomic oxygen in the 
late afternoon through midnight period, with decreasing 0 concentrations 
leading to increasing OH and HO2 concentrations in a positive feedback 

mechanism. The H density serves essentially as a reservoir of odd hydro- 
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gen and closely follows the 0 density time profile, thus limiting the 
positive feedback between 0 and OH. 

The disturbed time density profiles follow a pattern similar to the quiet- 
day profiles and it is more instructive to examine the ratio of disturbed- 
day densities to quiet-day densities for the 4-5 August period as shown 
in Fig. 8. The relative rise in OH (with most of the odd hydrogen being 
stored in the atomic hydrogen reservoir) causes a decline in the 0 density 
and, consequently, the (K density. Falling odd oxygen densities and 

secondarily a declining ion-pair production rate then cause the H reser- 
voir to begin to empty and a corresponding rapid rise in the relative OH 
density. Rapidly declining H densities cause the ratio of the OH densi- 
ties to begin decreasing about an hour later. The net effect is that the 
enhanced odd hydrogen production causes initial drop in odd oxygen with 
the result that the relative amount of atomic hydrogen during the night- 
time period is lower; i.e., the daytime reservoir of atomic hydrogen is 
more completely drained. During the midnight period, the relative ratio 
of atomic oxygen actually increases because the particle induced disso- 
ciation of 0« exceeds the solar photon induced dissociation [17]; this 

effect is enhanced by the increasing ion-pair production rate during 
this late night period. The relative concentrations of H and in turn 
OH and HO,, begin to rapidly increase again. The increase in odd hydrogen 

gradually halts the relative increase in odd oxygen; the growing deple- 
tion of atomic oxygen causes the relative rate of increase in odd hydro- 
gen to decline (note, however, that the total amount of odd hydrogen is 
increasing). 

The sudden peak in the ion-pair production rate at local noon serves as 
perhaps the clearest example of what enhanced ionization can do. The 
response time of the H density (i.e., that time it would take to replace 
the H density from the SPE generated odd hydrogen) is ^ 2000 s, that of 
OH ^ 400 s, at this peak period. Lifetimes against being transformed by 
reaction paths 21 and 23 (Fig. 3b) are about 20 s for OH and 140 s for H. 
The response of the odd hydrogen densities to the changing SPE source is 
therefore limited by the H response: time, and most of the odd hydrogen 
is initially stored as H. The lifetime of 0 against destruction by OH 
and HO2 is ^ 500 s during these disturbed conditions (as opposed to % 
13,000 s for a quiet day noon); therefore, the 0 density begins to de- 
crease as rapidly as the OH and HO2 densities increase - at essentially 

the H atom density response time. During the peak of the ion pair pro- 
duction, the lifetime of odd hydrogen species (principally H) against re- 
combination to even hydrogen species (principally HpO) is %  4000 s, much 
longer than the drop-off time associated with this particular ionization 
peak. The increase in odd oxygen is governed by the solar photon disso- 
ciation of 02 which has a time constant of J  400 s near noon for these 
reduced odd oxygen densities. The main loss of odd oxygen, is to the odd 
hydrogen, and odd hydrogen decays with the above stated lifetime of ^ 400 s 
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Figure 8, The ratio of the disturbed day (SPE) densities to the 
quiet day densities for the 4-5 August 1972 time period, 
Also shown is the SPE induced ion-pair production rate 
for the same 24-hour period. 
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To sunmarize, the density of odd hydrogen species can respond to changes 
in the ion-pair production rate on time scales of less than an hour near 
80 km. In the upper mesosphere the odd hydrogen produced is mainly 
stored as H. In the lower mesosphere OH and HO« gradually becomes the 
reservoir for odd hydrogen. The decay time for odd hydrogen is somewhat 
more than an hour near 80 km. The odd oxygen is principally under solar 
control for its production, but its major loss processes during disturbed 
conditions are with odd hydrogen, and therefore changes in odd oxygen 
densities generally follow the time scales of the odd hydrogen. In sun- 
rise/sunset situations, the rapidly changing solar influence may dominate 
particle precipitation effects or, as is more likely, nuike it difficult 
to clearly separate the two effects. 

CONCLUSIONS 

The greatly enhanced number densities of ionized species during a solar 
proton event affect the concentrations of several of the important minor 
neutral species in the mesosphere. The change is brought about through 
the enhanced production of odd hydrogen and odd nitrogen in the positive 
ion chain. A practical upper limit for (H + OH) production per ion pair 
below 80 km is 1.8. This racio rapidly decreases above 80 km, more so 
for increased ionization rates. The odd nitrogen production ratio varies 
within the narrower limits of 1.2 to 1.3. Within the mesosphere, the 
production of odd hydrogen drives the changes in the minor neutral con- 
stituent chemistry. 

The increased ionization during the peak 24-hour period of the August 
1972 SPE is capable of increasing the OH concentration and decreasing the 
0 and 03 concentrations up to a factor of 20 near 80 km, with smaller 
changes apparent throughout the mesosphere. 

The time constants associated with the creation of odd nitrogen, and the 
resultant increase in the NO concentration, are rapid enough (< 1 s) to 
be considered simultaneous with the ionization event. However, the re- 
moval of NO in the mesosphere is very slow so that enhanced NO concentra- 
tions persist for days, finally to be altered by large-scale transport 
phenomena. The tine constants associated with increases in odd hydrogen, 

and consequently with decreases in odd oxygen, are K  2 x 10J s, while 
removal times of odd hydrogen in the mesosphere are ^ 4 x 103 s. Thus 
the response of the oxygen-hydrogen chemistries and densities to an 
ionizing event is on the time scale of a few hours, while the return to 
photochemical equilibrium is on the time scale of several hours to a few 
days. 

It is important to be able to determine the immediate products and effects 
of enhanced ionization in the atmosphere so that they may be used as 
lumped parameters in large-scale NWE simulation codes. Solar proton 
events produce ionization effects which are analogous to late-time effects 
of nuclear bursts. Successful modeling of such naturally occurring events 
serves to validate the sections of NWE codes which deal with post-burst 
effects in the middle atmosphere. 
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